4.7 Review

Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions

期刊

BLOOD
卷 121, 期 20, 页码 4036-4045

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2012-09-456897

关键词

-

资金

  1. USPHS [NS052528, AI067769]
  2. California Institutes for Regenerative Medicine (CIRM) [RT2-01920]

向作者/读者索取更多资源

In 1988, the gene responsible for the autosomal recessive disease ataxiatelangiectasia (A-T) was localized to 11q22.3-23.1. It was eventually cloned in 1995. Many independent laboratories have since demonstrated that in replicating cells, ataxia telangiectasia mutated (ATM) is predominantly a nuclear protein that is involved in the early recognition and response to double-stranded DNA breaks. ATM is a high-molecular-weight PI3K-family kinase. ATM also plays many important cytoplasmic roles where it phosphorylates hundreds of protein substrates that activate and coordinate cell-signaling pathways involved in cell-cycle checkpoints, nuclear localization, gene transcription and expression, the response to oxidative stress, apoptosis, nonsense-mediated decay, and others. Appreciating these roles helps to provide new insights into the diverse clinical phenotypes exhibited by A-T patients-children and adults alike-which include neurodegeneration, high cancer risk, adverse reactions to radiation and chemotherapy, pulmonary failure, immunodeficiency, glucose transporter aberrations, insulin-resistant diabetogenic responses, and distinct chromosomal and chromatin changes. An exciting recent development is the ATM-dependent pathology encountered in mitochondria, leading to inefficient respiration and energy metabolism and the excessive generation of free radicals that themselves create life-threatening DNA lesions that must be repaired within minutes to minimize individual cell losses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据