4.7 Article

AngiomiR-126 expression and secretion from circulating CD34+ and CD14+ PBMCs: role for proangiogenic effects and alterations in type 2 diabetics

期刊

BLOOD
卷 121, 期 1, 页码 226-236

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2012-01-407106

关键词

-

资金

  1. Zurich Center for Integrative Human Physiology (ZIHP
  2. University of Zurich, Zurich, Switzerland)
  3. Swiss National Foundation [124112]
  4. Swiss Heart Foundation
  5. Uniscientitia Foundation
  6. European Foundation for the Study of Diabetes/Sanofi-aventis Micro- and Macrovascular Programme
  7. University of Zurich

向作者/读者索取更多资源

Several peripheral blood mononuclear cell (PBMC)-derived cell populations can promote angiogenesis, and differences in CD34(+) or CD14(+) surface expression have been used to separate PBMC subpopulations in this respect. AngiomiRs, microRNAs regulating angiogenesis, are key regulators of angiogenic processes. The present study examines differential angiomiR expression/secretion from CD34(+)/CD14(+), CD34(+)/CD14(-), CD34(-)/CD14(+), and CD34(-)/CD14(-) PBMC subsets and their relevance for different proangiogenic properties. Notably, both circulating human CD34(+)/14(+) and CD34(+)/14(-) PBMC subsets and their supernatants exerted more potent proangiogenic effects compared with CD34(-) PBMC subsets. MiR-126 was identified as most differentially expressed angiomiR in CD34(+) compared with CD34(-) PBMC subsets, determined by miR-array and RT-PCR validation. Modulation of miR-126 by anti-miR-126 or miR-mimic-126 treatment resulted in significant loss or increase of proangiogenic effects of CD34(+) PBMCs. MiR-126 levels in supernatants of CD34(+) PBMC subsets were substantially higher compared with CD34(-) PBMC subsets. MiR-126 was secreted in microvesicles/exosomes, and inhibition of their release impaired CD34(+) PBMCs proangiogenic effects. Notably, high-glucose treatment or diabetes reduced miR-126 levels of CD34(+) PBMCs, associated with impaired proangiogenic properties that could be rescued by miR-mimic-126 treatment. The present findings provide a novel molecular mechanism underlying increased proangiogenic effects of CD34(+) PBMCs, that is, angiomiR-126 expression/secretion. Moreover, an alteration of angiomiR-126 expression in CD34(+) PBMCs in diabetes provides a novel pathway causing impaired proangiogenic effects. (Blood. 2013; 121(1): 226-236)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据