4.7 Article

Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis

期刊

BLOOD
卷 119, 期 4, 页码 1054-1063

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2011-08-372193

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [Sonderforschungsbereich 688]
  2. Rudolf Virchow Center
  3. German Excellence Initiative

向作者/读者索取更多资源

Vascular injury initiates rapid platelet activation that is critical for hemostasis, but it also may cause thrombotic diseases, such as myocardial infarction or ischemic stroke. Reorganizations of the platelet cytoskeleton are crucial for platelet shape change and secretion and are thought to involve activation of the small GTPase RhoA. In this study, we analyzed the in vitro and in vivo consequences of megakaryocyte- and platelet-specific RhoA gene deletion in mice. We found a pronounced macrothrombocytopenia in RhoA-deficient mice, with platelet counts of approximately half that of wild-type controls. The mutant cells displayed an altered shape but only a moderately reduced life span. Shape change of RhoA-deficient platelets in response to G(13)-coupled agonists was abolished, and it was impaired in response to G(q) stimulation. Similarly, RhoA was required for efficient secretion of a and dense granules downstream of G(13) and G(q). Furthermore, RhoA was essential for integrin-mediated clot retraction but not for actomyosin rearrangements and spreading of activated platelets on fibrinogen. In vivo, RhoA deficiency resulted in markedly prolonged tail bleeding times but also significant protection in different models of arterial thrombosis and in a model of ischemic stroke. Together, these results establish RhoA as an important regulator of platelet function in thrombosis and hemostasis. (Blood. 2012;119(4): 1054-1063)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据