4.7 Article

A Detailed Cloud Fraction Climatology of the Upper Indus Basin and Its Implications for Near-Surface Air Temperature

期刊

JOURNAL OF CLIMATE
卷 28, 期 9, 页码 3537-3556

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-14-00505.1

关键词

-

资金

  1. Leverhulme Trust
  2. British Council
  3. UK Natural Environment Research Council (NERC) [NE/D009588/1]
  4. U.S. National Science Foundation (NSF)
  5. NERC [NE/D009588/1] Funding Source: UKRI
  6. Natural Environment Research Council [NE/D009588/1] Funding Source: researchfish

向作者/读者索取更多资源

Clouds play a key role in hydroclimatological variability by modulating the surface energy balance and air temperature. This study utilizes MODIS cloud cover data, with corroboration from global meteorological reanalysis (ERA-Interim) cloud estimates, to describe a cloud climatology for the upper Indus River basin. It has specific focus on tributary catchments in the northwest of the region, which contribute a large fraction of basin annual runoff, including 65% of flow originating above Besham, Pakistan or 50 km(3) yr(-1) in absolute terms. In this region there is substantial cloud cover throughout the year, with spatial means of 50%-80% depending on the season. The annual cycles of catchment spatial mean daytime and nighttime cloud cover fraction are very similar. This regional diurnal homogeneity belies substantial spatial variability, particularly along seasonally varying vertical profiles (based on surface elevation). Correlations between local near-surface air temperature observations and MODIS cloud cover fraction confirm the strong linkages between local atmospheric conditions and near-surface climate variability. These correlations are interpreted in terms of seasonal and diurnal variations in apparent cloud radiative effect and its influence on near-surface air temperature in the region. The potential role of cloud radiative effect in recognized seasonally and diurnally asymmetrical temperature trends over recent decades is also assessed by relating these locally observed trends to ERA-Interim-derived trends in cloud cover fraction. Specifically, reduction in nighttime cloud cover fraction relative to daytime conditions over recent decades appears to provide a plausible physical mechanism for the observed nighttime cooling of surface air temperature in summer months.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据