4.7 Article

Biologic properties and enucleation of red blood cells from human embryonic stem cells

期刊

BLOOD
卷 112, 期 12, 页码 4475-4484

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2008-05-157198

关键词

-

向作者/读者索取更多资源

Human erythropoiesis is a complex multi-step process that involves the differentiation of early erythroid progenitors to mature erythrocytes. Here we show that it is feasible to differentiate and mature human embryonic stem cells (hESCs) into functional oxygen-carrying erythrocytes on a large scale (10(10)-10(11) cells/6-well plate hESCs). We also show for the first time that the oxygen equilibrium curves of the hESC-derived cells are comparable with normal red blood cells and respond to changes in pH and 2,3-diphosphoglyerate. Although these cells mainly expressed fetal and embryonic globins, they also possessed the capacity to express the adult beta-globin chain on further maturation in vitro. Polymerase chain reaction and globin chain specific immunofluorescent analysis showed that the cells increased expression of beta-globin (from 0% to > 16%) after in vitro culture. Importantly, the cells underwent multiple maturation events, including a progressive decrease in size, increase in glycophorin A expression, and chromatin and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to more than 60% of the cells generating red blood cells with a diameter of approximately 6 to 8 mu m. The results show that it is feasible to differentiate and mature hESCs into functional oxygen-carrying erythrocytes on a large scale. (Blood. 2008;112:4475-4484)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据