4.6 Article

A series of BiOxIy/GO photocatalysts: synthesis, characterization, activity, and mechanism

期刊

RSC ADVANCES
卷 6, 期 86, 页码 82743-82758

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra12482h

关键词

-

向作者/读者索取更多资源

A series of bismuth oxyiodide (BiOxIy)-grafted graphene oxide (GO) sheets with different GO contents were synthesized through a simple hydrothermal method. This is the first report where four composites of BiOI/GO, Bi4O5I2/GO, Bi7O9I3/GO, and Bi5O7I/GO have been characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy. The assembled BiOxIy/GO composites exhibited excellent photocatalytic activities in the degradation of crystal violet (CV) under visible light irradiation. The order of rate constants was as follows: Bi7O9I3/GO > Bi4O5I2/GO > Bi4O5I2 > Bi7O9I3 > Bi5O7I/GO > BiOI/GO > BiOI > Bi5O7I > GO. The photocatalytic activity of the Bi7O9I3/GO (or Bi4O5I2/GO) composite reached a maximum rate constant of 0.351 (or 0.322) h(-1), which was 1.8 (or 1.7) times higher than that of Bi7O9I3 (or Bi4O5I2), 6-7 times higher than that of BiOI/GO, and 119-130 times higher than that of BiOI. The quenching effects of different scavengers and electron paramagnetic resonance demonstrated that the superoxide radical (O-2(center dot-)) played a major role and holes (h(+)) and hydroxyl radicals ((OH)-O-center dot) played a minor role as active species in the degradation of crystal violet (CV) and salicylic acid (SA). Possible photodegradation mechanisms are proposed and discussed in this research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据