4.6 Article

Catalyst-free synthesis of a three-dimensional nanoworm-like gallium oxide-graphene nanosheet hybrid structure with enhanced optical properties

期刊

RSC ADVANCES
卷 6, 期 21, 页码 17669-17677

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra24577j

关键词

-

资金

  1. CNPq (Brazil)
  2. FAPESP (Brazil)

向作者/读者索取更多资源

We here report the synthesis and growth of catalyst-free three-dimensional beta-gallium oxide nanoworm-like nanostructures on graphene nanosheets (3D beta-Ga2O3@GNSs) using a solid mixture of graphite oxide and gallium acetylacetonate by the microwave (MW)-assisted method for the first time. The MW-assisted synthesis of the 3D beta-Ga2O3@GNSs hybrids contains 1D semiconducting beta-Ga2O3 nanoworms (NWs) and 2D highly conducting graphene nanosheets (GNSs) materials. The beta-Ga2O3 NWs have an average diameter of 200 nm and lengths of up to similar to 1 mu m grown on the GNSs. These 3D beta-Ga2O3@GNSs hybrids have been synthesized in a very short time with scalable amounts. The controlling parameters such as MW irradiation time and power were found to greatly influence the structural morphology of the assynthesized 3D beta-Ga2O3@GNSs hybrid. This method for the synthesis of 3D beta-Ga2O3@GNSs hybrids is imperative due to it allowing excellent control over experimental parameters, being low cost and having better reproducibility. Also, the catalyst-free MW-assisted method is a much more rapid and thus higher throughput alternative for effective and scalable growth over the conventional heating method. The crystallinity, structure, morphology, and optical analysis of the 3D beta-Ga2O3@GNSs hybrids are carried out utilizing several techniques. The formation of the 3D beta-Ga2O3@GNSs hybrids shows a band gap variation from 4.94 to 4.48 eV associated with the structural evolution. A suitable growth mechanism has been suggested for the formation of these 3D beta-Ga2O3@GNSs hybrids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据