4.6 Article

The enhanced CO gas sensing performance of Pd/SnO2 hollow sphere sensors under hydrothermal conditions

期刊

RSC ADVANCES
卷 6, 期 84, 页码 80455-80461

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra15765c

关键词

-

资金

  1. National Nature Science Foundation of China [61374218, 61134010, 61327804, 61520106003]
  2. Program for Chang Jiang Scholars and Innovative Research Team in University [IRT13018]
  3. National High-Tech Research and Development Program of China (863 Program) [2014AA06A505]

向作者/读者索取更多资源

Pd-doped SnO2 hollow spheres were synthesized via a facile one-step hydrothermal route. Utilized as the materials in sensors, the 3.0 wt% Pd-doped SnO2 demonstrated more excellent gas-sensing properties towards CO than 1.5 wt% and 4.5 wt% Pd-doped SnO2. Compared with the SnO2 hollow spheres gas sensor, the optimum operating temperature of the Pd-doped SnO2 hollow spheres gas sensor dropped to 200 degrees C from 250 degrees C; the response value to 100 ppm CO was raised to 14.7 from 2.5 accordingly. Furthermore, the response and recovery times of the 3.0 wt% Pd-doped SnO2 sensor are 5 s and 92 s, respectively, to 100 ppm CO at 200 degrees C. It is believed that its enhanced gas-sensing performances are derived from the synergistic interactions between the dispersed Pd and the characteristic configuration of the SnO2 hollow sphere. In addition, theoretical calculations have also been performed with periodic slab models by using density functional theory, which explain well our experimental phenomenon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据