4.7 Article

Enteric Glia Mediate Pathways That Neuron Death in Colitis Through Purinergic Pathways That Require Connexin-43 and Nitric Oxide

出版社

ELSEVIER INC
DOI: 10.1016/j.jcmgh.2015.08.007

关键词

Enteric Nervous System; Hemichannels; Oxidative Stress; Purines

资金

  1. Pharmaceutical Researchers and Manufacturers Association of America Foundation
  2. Crohn's and Colitis Foundation of America
  3. Biotechnology and Biological Sciences Research Council [BB/I025409/1]
  4. National Institutes of Health [HD065879, R01DK103723]
  5. EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH & HUMAN DEVELOPMENT [K12HD065879] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK103723] Funding Source: NIH RePORTER
  7. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [T32ES007255] Funding Source: NIH RePORTER
  8. BBSRC [BB/I025409/1] Funding Source: UKRI

向作者/读者索取更多资源

BACKGROUND & AIMS: The concept of enteric glia as regulators of intestinal homeostasis is slowly gaining acceptance as a central concept in neurogastroenterology. Yet how glia contribute to intestinal disease is still poorly understood. Purines generated during inflammation drive enteric neuron death by activating neuronal P2X7 purine receptors (P2X7R); triggering adenosine triphosphate (ATP) release via neuronal pannexin-1 channels that subsequently recruits intracellular calcium ([Ca 2 1,) in surrounding enteric glia. We tested the hypothesis that the activation of enteric glia contributes to neuron death during inflammation. METHODS: We studied neuroinflammation in vivo using the 2,4-dinitrobenzene sulfonic acid model of colitis and in situ using whole-mount preparations of human and mouse intestine. Transgenic mice with a targeted deletion of glial connexin-43 (Cx43) [GFAP::Cre(ERT2+/-)/Cx43(f/f)] were used to specifically disrupt glial signaling pathways. Mice deficient in inducible nitric oxide (NO) synthase (iNOS(-/-)) were used to study NO production. Protein expression and oxidative stress were measured using immunohistochemistry and in situ Ca2+ and NO imaging were used to monitor glial [Ca2+](i) and [NO](i). RESULTS: Purinergic activation of enteric glia drove [Ca2+](i) responses and enteric neuron death through a Cx43-dependent mechanism. Neurotoxic Cx43 activity, driven by NO production from glial iNOS, was required for neuron death. Glial Cx43 opening liberated ATP and Cx43-dependent ATP release was potentiated by NO. CONCLUSIONS: Our results show that the activation of glial cells in the context of neuroinflammation kills enteric neurons. Mediators of inflammation that include ATP and NO activate neurotoxic pathways that converge on glial Cx43 hemichannels. The glial response to inflammatory mediators might contribute to the development of motility disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据