4.7 Article

What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3-UKCA and inter-model variation from AeroCom Phase II

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 16, 期 4, 页码 2221-2241

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-16-2221-2016

关键词

-

资金

  1. Natural Environment Research Council [NE/J022624/1]
  2. Met Office
  3. European Research Council under the European Union/ERC [FP7-280025]
  4. Natural Environment Research Council (NERC) through the National Centre for Atmospheric Science (NCAS)
  5. Academy of Finland Centre of Excellence [272041]
  6. US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) programme
  7. DOE [DE-AC06-76RLO 1830]
  8. Research Council of Norway through the EarthClim [207711/E10]
  9. EVA [229771]
  10. NOTUR/NorStore projects, by the Norwegian Space Centre through PM-VRAE
  11. EU
  12. Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)
  13. Environment Canada
  14. Research Council of Norway
  15. supercomputer system of the National Institute for Environmental Studies, Japan
  16. Ministry of the Environment, Japan [S-12-3]
  17. JSPS KAKENHI [15H01728, 15K12190]
  18. NASA-MAP (NASA) [NNX09AK32G]
  19. Max Planck Society
  20. Div Atmospheric & Geospace Sciences [1048995] Funding Source: National Science Foundation
  21. NERC [NE/J022624/1] Funding Source: UKRI

向作者/读者索取更多资源

The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. We also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据