4.7 Article

Comparative life cycle assessment of laminated and vacuum vapor-deposited thin film solid-state batteries

期刊

JOURNAL OF CLEANER PRODUCTION
卷 91, 期 -, 页码 158-169

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2014.12.003

关键词

Lithium battery; Life cycle analysis; Manufacturing; Electric vehicle; Energy storage; Solid electrolyte

资金

  1. Sakti3, a Michigan Economic Development Corporation Center of Energy Excellence

向作者/读者索取更多资源

Lamination technologies used to produce lithium ion batteries are limited by the capital investment needed for multiple unit operations, solvent use for electrolyte and electrode slurries, and an inability to exert control over active material particle morphology and homogeneity. Advancements in thin-film solid-state processing using vacuum coating hold promise to overcome these challenges for batteries with superior energy density and cycle life, if cost and scalability issues can be overcome. A comparative life cycle assessment is reported for battery production using lamination and thin-film vacuum vapor deposition. Lithium vanadium oxide solid-state cells are found to have the lowest impact, per unit energy storage, in cumulative energy demand (CED), global warming potential (GWP), and six other midpoint environmental indicators. Human health and resource depletion impacts are generally higher for lithium manganese oxide and lithium cobalt oxide solid-state cells than for their laminated counterparts, whereas CED and GWP per unit energy storage are 25-65% lower for solid-state cells across all cathode chemistries. Sensitivity analysis, taking into account uncertainties related to solid-state cell properties and vacuum vapor deposition process efficiencies, indicates that CED and GWP impacts for battery electric vehicle mobility using packs with solid-state cells will be lower than those incurred using laminated cells. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据