3.9 Article

Synthesis and Characterization of Core-Shell Magnetic Mesoporous Silica and Organosilica Nanostructures

期刊

MRS ADVANCES
卷 2, 期 19-20, 页码 1037-1045

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/adv.2017.69

关键词

-

资金

  1. CNR Short Term Mobility Program
  2. CNRS Chaire Total Visiting Professorship Program
  3. Ministry of Science and Technological Development of the Republic of Serbia [III45019]
  4. MagBioVin FP7 Era Chairs project

向作者/读者索取更多资源

Initial results en route toward construction of complex magnetic core-shell silica and organosilica nanotheranostics are presented. Magnetite nanoparticles are synthesized by three different methods and embedded within mesoporous silica and organosilica frameworks by different surfactant-templated procedures to produce three types of core-shell nanoparticles. Magnetite nanoparticles (15 nm in diameter) are embedded within mesoporous silica nanoparticles to produce cell-like material with predominantly one magnetite nuclei-resembling core per nanoparticle, with final particle diameter of ca. 150 nm, specific surface area of 573 m(2)/g and hexagonally structured tubular pores (2.6 nm predominant diameter), extended throughout the volume of nanoparticles. Two forms of spherical core-shell nanoparticles composed of magnetite cores embedded within mesoporous organosilica shells are also obtained by employing ethylene and ethane bridged organobisalkoxysilane precursors. The obtained nanomaterials are characterized by high surface area (978 and 820 m(2)/g), tubular pore morphology (2 and 2.8 nm predominant pore diameters), different diameters (386 and 100-200 nm), in case of ethylene- and ethane-composed organosilica shells, respectively. Different degree of agglomeration of magnetite nanoparticles was also observed in the obtained materials, and in the case of utilization of surfactant-pre-stabilized magnetite nanoparticles for the syntheses, their uniform and non-agglomerated distribution within the shells was noted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据