4.7 Article

Changes in Marine Prokaryote Composition with Season and Depth Over an Arctic Polar Year

期刊

FRONTIERS IN MARINE SCIENCE
卷 4, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmars.2017.00095

关键词

Arctic; marine microbiology; seasonality; nutrient cycling; depth; climate change; phytoplankton bloom; mesopelagic

资金

  1. Research Council of Norway [RCN 225956]
  2. Carbon Bridge project [RCN 226415]
  3. Microorganisms in the Arctic: Major drivers of biogeochemical cycles and climate change [RCN 227062]

向作者/读者索取更多资源

As the global climate changes, the higher latitudes are seen to be warming significantly faster. It is likely that the Arctic biome will experience considerable shifts in ice melt season length, leading to changes in photoirradiance and in the freshwater inputs to the marine environment. The exchange of nutrients between Arctic surface and deep waters and their cycling throughout the water column is driven by seasonal change. The impacts, however, of the current global climate transition period on the biodiversity of the Arctic Ocean and its activity are not yet known. To determine seasonal variation in the microbial communities in the deep water column, samples were collected from a profile (1-1000 m depth) in the waters around the Svalbard archipelago throughout an annual cycle encompassing both the polar night and day. High-throughput sequencing of 16S rRNA gene amplicons was used to monitor prokaryote diversity. In epipelagic surface waters (<200 m depth), seasonal diversity varied significantly, with light and the corresponding annual phytoplankton bloom pattern being the primary drivers of change during the late spring and summer months. In the permanently dark mesopelagic ocean depths (>200 m), seasonality subsequently had much less effect on community composition. In summer, phytoplankton-associated Gammaproteobacteria and Flavobacteriia dominated surface waters, whilst in low light conditions (surface waters in winter months and deeper waters all year round), the Thaumarchaeota and Chlorotlexi-type SAR202 predominated. Alpha-diversity generally increased in epipelagic waters as seasonal light availability decreased; OTU richness also consistently increased down through the water column, with the deepest darkest waters containing the greatest diversity. Beta-diversity analyses confirmed that seasonality and depth also primarily drove community composition. The relative abundance of the eleven predominant taxa showed significant changes in surface waters in summer months and varied with season depending on the phytoplankton bloom stage; corresponding populations in deeper waters however, remained relatively unchanged. Given the significance of the annual phytoplankton bloom pattern on prokaryote diversity in Arctic waters, any changes to bloom dynamics resulting from accelerated global warming will likely have major impacts on surface marine microbial communities, those impacts inevitably trickling down into deeper waters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据