4.6 Article

miRNA-340 inhibits osteoclast differentiation via repression of MITF

期刊

BIOSCIENCE REPORTS
卷 37, 期 -, 页码 -

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BSR20170302

关键词

-

资金

  1. Zhejiang Provincial Natural Science Foundation of China [LY14H060006, LY15H060006, LY16H060007]
  2. Natural Scientific Research Foundation of Zhejiang Medical College [2011XZB01]
  3. Zhejiang Provincial Health Bureau Science Foundation of China [2012KYB022]
  4. Zhejiang Provincial Chinese Traditional Medicine Bureau Science Foundation of China [2012ZB015]

向作者/读者索取更多资源

Many miRNAs play critical roles in modulating various biological processes of osteoclast differentiation and function. Microphthalmia-associated transcription factor (MITF), a target of miR-340, served as pivotal transcription factor involved in osteoclast differentiation. However, the role of miR-340 and MITF during osteoclast differentiation has not yet been clearly established. Tartrate-resistant acid phosphatase (TRAP) staining assay was performed to identify osteoclasts differentiated from bone marrow-derived macrophages (BMMs). Quantitative reverse transcription PCR (qRT-PCR) or Western blotting was undertaken to examine the mRNA or protein expression respectively. Luciferase reporter assay was performed to investigate the interaction between miR-340 and MITF. MITF was knocked down and miR-340 was overexpressed and transfected into BMMs to detect their effects on osteoclast differentiation. Firstly, qRT-PCR analysis showed that miR-340 was down-regulated during osteoclast differentiation stimulated by macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappa B (RANK) ligand (RANKL). Besides, we found that overexpression of miRNA-340 inhibited osteoclast differentiation and suppressed both the mRNA and protein level of MITF. Finally, Western blot and qRT-PCR analysis revealed that silencing MITF inhibited TRAP, calcitonin receptor, V-ATPase d2, and cathepsin K. miR-340 suppresses osteoclast differentiation by inhibiting MITF. Our findings may provide promising therapeutic targets for osteoclast-associated diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据