4.7 Article

Identification-based simplified model of large container ships using support vector machines and artificial bee colony algorithm

期刊

APPLIED OCEAN RESEARCH
卷 68, 期 -, 页码 249-261

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apor.2017.09.006

关键词

Nonlinear ship dynamics; Simplified ship models; Large ships; Support vector machines; Artificial bee colony algorithm; Parameter identification

资金

  1. Ministry of Science and Culture of Lower Saxony

向作者/读者索取更多资源

The 6 degrees of freedom (DOE) model with a high degree of complexity for capturing ship dynamics is generally able to track the nonlinear and coupling dynamics of ships. However, the 6 DOF model makes challenges in estimating model coefficients and designing the model-based control. Therefore, simplified ship dynamic models within allowed accuracy are essential. This paper simplified the 6 DOF nonlinear dynamic model of ships into two decoupled models including the speed model and the steering model through reasonable assumptions. Those models were tested through maneuvering simulations of a container ship with a 4 DOF dynamic model. Support vector machines (SVM) optimized by the artificial bee colony algorithm (ABC) was used to identify parameters of speed and steering models by analyzing the rudder angle, propeller shaft speed, surge and sway velocities, and yaw rate from simulated data extracted from a series of maneuvers made by the container ship. Comparisons with the first order linear and nonlinear Nomoto models show that the simplified nonlinear steering model can capture more complicated dynamics and performs better. Additionally, comparisons among three different parameter identification methods demonstrate similar identification results but the different performance involving the applicability and effectiveness. SVM optimized by ABC is relatively convenient and effective for parameter identification of ship simplified dynamic models. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据