3.8 Article

Calcium-Mediated Repression of β-Catenin and Its Transcriptional Signaling Mediates Neural Crest Cell Death in an Avian Model of Fetal Alcohol Syndrome

出版社

WILEY
DOI: 10.1002/bdra.20833

关键词

ethanol; neural crest; apoptosis; intracellular calcium; beta-catenin; Wnt signaling

资金

  1. National Institute of Hospitals [R37 AA11085, R21 AA17287]

向作者/读者索取更多资源

Fetal alcohol syndrome (FAS) is a common birth defect in many societies. Affected individuals have neurodevelopmental disabilities and a distinctive craniofacial dysmorphology. These latter deficits originate during early development from the ethanol-mediated apoptotic depletion of cranial facial progenitors, a population known as the neural crest. We showed previously that this apoptosis is caused because acute ethanol exposure activates G-protein-dependent intracellular calcium within cranial neural crest progenitors, and this calcium transient initiates the cell death. The dysregulated signals that reside downstream of ethanol's calcium transient and effect neural crest death are unknown. Here we show that ethanol's repression of the transcriptional effector beta-catenin causes the neural crest losses. Clinically relevant ethanol concentrations (22-78 mM) rapidly deplete nuclear beta-catenin from neural crest progenitors, with accompanying losses of beta-catenin transcriptional activity and downstream genes that govern neural crest induction, expansion, and survival. Using forced expression studies, we show that beta-catenin loss of function (via dominant-negative T cell transcription factor [TCF]) recapitulates ethanol's effects on neural crest apoptosis, whereas beta-catenin gain-of-function in ethanol's presence preserves neural crest survival. Blockade of ethanol's calcium transient using Bapta-AM normalizes beta-catenin activity and prevents the neural crest losses, whereas ionomycin treatment is sufficient to destabilize beta-catenin. We propose that ethanol's repression of beta-catenin causes the neural crest losses in this model of FAS. beta-Catenin is a novel target for ethanol's teratogenicity. beta-Catenin/Wnt signals participate in many developmental events and its rapid and persistent dysregulation by ethanol may explain why the latter is such a potent teratogen. Birth Defects Research (Part A) 91:591-602, 2011. (C) 2011 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据