4.0 Article

Tidal Prediction

期刊

JOURNAL OF MARINE RESEARCH
卷 75, 期 3, 页码 189-237

出版社

SEARS FOUNDATION MARINE RESEARCH
DOI: 10.1357/002224017821836761

关键词

Harmonic constants; internal tides; tidal modeling; tidal prediction

资金

  1. National Aeronautics and Space Administration

向作者/读者索取更多资源

Tides are the most predictable of oceanographic phenomena, due both to the simplicity and predictability of the astronomical forcing and to the near linearity of the ocean's dynamical response. In the classical and simplest scenario, tidal prediction is based on harmonic analysis of past measurements at a fixed location. Limits to predictability arise because isolated astronomical spectral lines are broadened into cusps of incoherent energy, for example through interactions with non-tidal flows. Tidal prediction at locations without past measurements has historically been a major challenge, but, owing to near-global observations of modern satellite altimeters, the empirical harmonic approach now yields reasonably accurate predictions throughout most of the open ocean. Advances in numerical modeling and data assimilation allow these predictions to be refined (especially in shallow seas where observations remain insufficient to directly constrain tidal wave structure) and extended to include tidal currents. We review recent progress in the development of global and regional-scale tidal prediction capabilities, summarize accuracy of available charts, and briefly consider outstanding issues. Satellite altimetry has also helped unravel the global tidal energy budget and has clarified the role of internal tides as a sink of tidal energy. We summarize these results, and then turn to the challenging problem of predicting internal tides. To the extent that low modes remain coherent with the surface tide, elevations can be directly mapped. We review current efforts in this direction, which are already producing charts with predictive capability. However, internal tides (especially higher modes) interact much more strongly with lower-frequency ocean flows, so a significant fraction of this tidal signal is intermittent and incoherent. We close with a brief review of ongoing efforts to model global tides in combination with wind-forced ocean motions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据