4.3 Article

Control of galactosylated glycoforms distribution in cell culture system

期刊

BIOTECHNOLOGY PROGRESS
卷 30, 期 3, 页码 547-553

出版社

WILEY
DOI: 10.1002/btpr.1906

关键词

cell culture; galactosylated glycosylation; asparagine; integral ammonium

向作者/读者索取更多资源

Cell culture process conditions including media components and bioreactor operation conditions have a profound impact on recombinant protein quality attributes. Considerable changes in the distribution of galactosylated glycoforms (G0F, G1F, and G2F) were observed across multiple CHO derived recombinant proteins in development at Eli Lilly and Company when switching to a new chemically defined (CD) media platform condition. In the new CD platform, significantly lower G0F percentages and higher G1F and G2F were observed. These changes were of interest as glycosylation heterogeneity can impact the effectiveness of a protein. A systematic investigation was done to understand the root cause of the change and control strategy for galactosylated glycoforms distribution. It was found that changes in asparagine concentration could result in a corresponding change in G0F, G1F, and G2F distribution. A follow-up study examined a wider range of asparagine concentration and it was found that G0F, G1F, and G2F percentage could be titrated by adjusting asparagine concentration. The observed changes in heterogeneity from changing asparagine concentration are due to resulting changes in ammonium metabolism. Further study ascertained that different integrated ammonium level during the cell culture process could control G0F, G1F, and G2F percentage distribution. A mechanism hypothesis is proposed that integrated ammonium level impacts intracellular pH, which further regulates -1, 4 galactosyltransferase activity. (c) 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:547-553, 2014

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据