4.8 Article

Template-Free Electroless Plating of Gold Nanowires: Direct Surface Functionalization with Shape-Selective Nanostructures for Electrochemical Applications

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 36, 页码 31142-31152

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b09398

关键词

electroless plating; pyridine; gold; nanowires; in situ surface functionalization; electrocatalysis; peroxide sensing

资金

  1. DFG Research Fellowship by the German Research Foundation [MU 4125/1-1]
  2. Minerva Foundation
  3. German Ministry of Education and Research
  4. Hessen State Ministry of Higher Education, Research and the Arts via LOEWE RESPONSE
  5. German Research Foundation [DFG/682 INST163/2951]

向作者/读者索取更多资源

Metal nanowires (NWs) represent a prominent nanomaterial class, the interest in which is fueled by their tunable properties as well as their excellent performance in, for example, sensing, catalysis, and plasmonics. Synthetic approaches to obtain metal NWs mostly produce colloids or rely on templates. Integrating such nanowires into devices necessitates additional fabrication steps, such as template removal, nanostructure purification, or attachment. Here, we describe the development of a facile electroless plating protocol for the direct deposition of gold nanowire films, requiring neither templates nor complex instrumentation. The method is general, producing three-dimensional nano-wire structures on substrates of varying shape and composition, with different seed types. The aqueous plating bath is prepared by ligand exchange and partial reduction of tetrachloroauric acid in the presence of 4-dimethylaminopyridine and formaldehyde. Gold deposition proceeds by nucleation of new grains on existing nanostructure tips and thus selectively produces curvy, polycrystalline nanowires of high aspect ratio. The nanofabrication potential of this method is demonstrated by producing a sensor electrode, whose performance is comparable to that of known nanostructures and discussed in terms of the catalyst architecture. Due to its flexibility and simplicity, shape-selective electroless plating is a promising new tool for functionalizing surfaces with anisotropic metal nanostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据