4.3 Article

Development of a minimal cell-free translation system for the synthesis of presecretory and integral membrane proteins

期刊

BIOTECHNOLOGY PROGRESS
卷 21, 期 4, 页码 1243-1251

出版社

WILEY
DOI: 10.1021/bp049553u

关键词

-

向作者/读者索取更多资源

By combining translation and membrane integration/translocation systems, we have constructed a novel cell-free system for the production of presecretory and integral membrane proteins in vitro. A totally defined, cell-free system reconstituted from a minimal number of translation factors was supplemented with urea-washed inverted membrane vesicles (U-INVs) prepared from Escherichia coli, as well as with purified proteins mediating membrane targeting of presecretory and integral membrane proteins. Initially, efficient membrane translocation of a presecretory protein (pOmpA) was obtained simply by the addition of only SecA and SecB. Proteinase K digestion clearly showed the successful translocation of pOmpA inside the vesicles. Next, integration of an inner membrane protein (MtlA) into U-INVs was achieved in the presence of only SRP (Ffh) and SR (FtsY). Finally, a membrane protein possessing a large periplasmic region (FtsQ) and therefore requiring both factors (SRP/SR and SecA/SecB) for membrane integration/translocation was also shown to be integrated correctly in this cell-free system. Thus, our novel cell-free system provides not only an efficient strategy for the production of membrane-related proteins but also an improved platform for the biological study of protein translocation and integration mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据