4.5 Article

Optimization of WAG Process Using Dynamic Proxy, Genetic Algorithm and Ant Colony Optimization

期刊

ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
卷 43, 期 11, 页码 6399-6412

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13369-018-3173-7

关键词

WAG process; Dynamic proxy; Artificial neural network; Global optimization; Multi-objective optimization; Genetic algorithm; Ant colony optimization

向作者/读者索取更多资源

The optimization of water alternating gas injection (WAG) process is a complex problem, which requires a significant number of numerical simulations that are time-consuming. Therefore, developing a fast and accurate replacing method becomes a necessity. Proxy models that are light mathematical models have a high ability to identify very complex and non-straightforward problems such as the answers of numerical simulators in brief deadlines. Different static proxy models have been used to date, where a predefined model is employed to approximate the outputs of numerical simulators such as field oil production total (FOPT) or net present value, at a given time and not as functions of time. This study demonstrates the application of time-dependent multi Artificial Neural Networks as a dynamic proxy to the optimization of a WAG process in a synthetic field. Latin hypercube design is used to select the database employed in the training phase. By coupling the established proxy with genetic algorithm (GA) and ant colony optimization (ACO), the optimum WAG parameters, namely gas and water injection rates, gas and water injection half-cycle, WAG ratio and slug size, which maximize FOPT subject to some time-depending constraints, are investigated. The problem is formulated as a nonlinear optimization problem with bound and nonlinear constraints. The results show that the established proxy is found to be robust and an efficient alternative for mimicking the numerical simulator performances in the optimization of the WAG. Both GA and ACO are strongly shown to be highly effective in the combinatorial optimization of the WAG process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据