4.5 Article

An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization

期刊

BIOTECHNOLOGY JOURNAL
卷 7, 期 3, 页码 361-373

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.201100209

关键词

Biochemical engineering; Biofuels; Cellobiose; Cellulose; Saccharomyces

资金

  1. National Science Foundation
  2. Energy Biosciences Institute [50000029463]

向作者/读者索取更多资源

Commercial-scale cellulosic ethanol production has been hindered by high costs associated with cellulose-to-glucose conversion and hexose and pentose co-fermentation. Simultaneous saccharification and fermentation (SSF) with a yeast strain capable of xylose and cellobiose co-utilization has been proposed as a possible avenue to reduce these costs. The recently developed DA24-16 strain of Saccharomyces cerevisiae incorporates a xylose assimilation pathway and a cellodextrin transporter (CDT) that permit rapid growth on xylose and cellobiose. In the current work, a mechanistic kinetic model of cellulase-catalyzed hydrolysis of cellulose was combined with a multi-substrate model of microbial growth to investigate the ability of DA24-16 and improved cellobiose-consuming strains to obviate the need for exogenously added beta-glucosidase and to assess the impact of cellobiose utilization on SSF and separate hydrolysis and fermentation (SHF). Results indicate that improved CDT-containing strains capable of growing on cellobiose as rapidly as on glucose produced ethanol nearly as rapidly as non-CDT-containing yeast supplemented with beta-glucosidase. In producing 75 g/L ethanol, SSF with any strain did not result in shorter residence times than SHF with a 12 h saccharification step. Strains with improved cellobiose utilization are therefore unlikely to allow higher titers to be reached more quickly in SSF than in SHF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据