4.5 Article

Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose

期刊

BIOTECHNOLOGY JOURNAL
卷 6, 期 3, 页码 306-317

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.201000304

关键词

Bio-polyamide; Cadaverine; Hemicellulose; Metabolic engineering; Systems biology

资金

  1. BMBF [0315239A]

向作者/读者索取更多资源

In the present work, the bio-based production of 1,5-diaminopentane (cadaverine), an important building block for bio-polyamides, was extended to hemicellulose a non-food raw material. For this purpose, the metabolism of 1,5-diaminopentane-producing Corynebacterium glutamicum was engineered to the use of the C-5 sugar xylose. This was realized by heterologous expression of the xy/A and xylB genes from Escherichia coli, mediating the conversion of xylose into xylulose 5-phosphate (an intermediate of the pentose phosphate pathway), in a defined diaminopentane-producing C. glutamicum strain, recently obtained by systems metabolic engineering. The created mutant, C. glutamicum DAP-Xyl1, exhibited efficient production of the diamine from xylose and from mixtures of xylose and glucose. Subsequently, the novel strain was tested on industrially relevant hemicellulose fractions, mainly containing xylose and glucose as carbon source. A two-step process was developed, comprising (i) enzymatic hydrolysis of hemicellulose from dried oat spelts, and (ii) biotechnological 1,5-diaminopentane production from the obtained hydrolysates with the novel C. glutamicum strain. This now opens a future avenue towards bio-based 1,5-diaminopentane and bio-polyamides thereof from non-food raw materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据