4.5 Review

Metabolic regulation in Escherichia coli in response to culture environments via global regulators

期刊

BIOTECHNOLOGY JOURNAL
卷 6, 期 11, 页码 1330-1341

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.201000447

关键词

Escherichia coli; Global regulators; Integration of the metabolism; Metabolic engineering; Metabolic regulation

资金

  1. Japan Science and Technology Agency

向作者/读者索取更多资源

One of the ultimate goal of systems biology is to realize a virtual cell system in the computer. If this could be attained, it might be possible, for example, to quantitatively predict the effects of a culture environment and/or the removal/inactivation of specific genes on the metabolism without conducting many experiments. Thus, it may be possible to design cells, e. g., for more efficient production of a specific metabolite. To achieve this, it is important to properly understand the metabolic regulation mechanism and to develop a robust model by incorporating gene-level regulation into the enzymatic reaction model with the integration of different levels of information. However, the metabolic regulation in response to the change in culture environment is itself not well understood. Here, we overview how the culture environment affects cell metabolism via global regulators with sigma factors, considering the effects of carbon, nitrogen, and phosphate sources as well as oxygen, temperature, pH, and nutrient stress, etc., on transcriptional regulation. A variety of controlled strategies for the specific stimuli imposed on the cell appear to exist, and some of the regulations are interconnected by gene level regulation. Quantitative modeling for these regulation mechanisms is critical for efficient metabolic engineering of a cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据