4.7 Article

Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on FTIR macro- and micro-spectroscopy coupled with chemometrics

期刊

BIOTECHNOLOGY FOR BIOFUELS
卷 11, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s13068-018-1251-4

关键词

Moso bamboo; FTIR microscopic imaging; Lignocelluloses; Calibration transfer; Multivariate quantitative calibration

资金

  1. National Natural Science Foundation of China [31771676]
  2. Zhejiang Province Public Technology Research Program [2015C02008, 2017C02027]
  3. National Key Research and Development Program of China [2018YFD0700500]
  4. Special Funding Projects for Basic Scientific Research Projects in Universities [2015QNA6005]

向作者/读者索取更多资源

Background: Due to the increasing demands of energy and depletion of fossil fuel, bamboo is considered to be one of the most important renewable biological resources on the basis of its advantages of rapid growth ability and rich reserves. Cellulose, hemicellulose, and lignin are the three most important constituents in moso bamboo. Their concentrations and, especially, their microscopic distributions greatly affect their utilization efficiency and other physical properties as a biomass resource. However, no studies have achieved a quantitative visualization of the distribution of lignocellulose concentrations in transverse sections of bamboo. Therefore, this study proposed the use of quantitative multivariate spectral analysis to reveal the micro-chemical distribution of lignocelluloses in bamboo based on an integration of FTIR macro- and micro-spectroscopic imaging techniques. Results: Multivariate calibration models for the quantitative determination of lignocelluloses of bamboo were developed based on FTIR macro-spectroscopy, and the quantitative calibration models based on the FTIR characteristic bands showed an excellent performance with determination coefficients of 0.933, 0.878, and 0.912 for cellulose, hemicellulose, and lignin, respectively. These quantitative models were then utilized to the FTIR micro-spectroscopy of bamboo transverse sections which were corrected using a direct standardization algorithm. Subsequently, the micro-chemical distributions of cellulose, hemicellulose, and lignin were obtained based on the integration of the multivariate calibration models and corrected FTIR micro-spectroscopy. The combination of the multivariate calibration models and calibration transfer algorithm resulted in a final quantitative visualization of the chemical distributions of lignocelluloses in moso bamboos. Conclusions: Integration of the FTIR macro- and micro-spectroscopic imaging techniques can provide comprehensive information that can be used to exploit the resource of moso bamboo to develop biofuels and biosynthetic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据