4.7 Article

Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis

期刊

BIOTECHNOLOGY FOR BIOFUELS
卷 5, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1754-6834-5-77

关键词

Cellulose molecular weight; Gel permeation chromatography; Eluent for underivatized cellulose

资金

  1. German federal and state governments
  2. Deutsche Forschungsgemeinschaft (German Research Foundation) within research training group Biocatalysis using Non-Conventional Media -BioNoCo [1166]

向作者/读者索取更多资源

Background: The analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC) is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distributions has a limited applicability until now. Results: In this work we present a new method to analyze cellulose molecular weight distributions that does not require any prior cellulose swelling, activation, or derivatization. The cellulose samples were directly dissolved in dimethylformamide (DMF) containing 10-20% (v/v) 1-ethyl-3-methylimidazolium acetate (EMIM Ac) for 60 minutes, thereby reducing the sample preparation time from several days to a few hours. The samples were filtrated 0.2 mu m to avoid column blocking, separated at 0.5 mL/min using hydrophilic separation media and were detected using differential refractive index/multi angle laser light scattering (dRI/MALLS). The applicability of this method was evaluated for the three cellulose types Avicel, alpha-cellulose and Sigmacell. Afterwards, this method was used to measure the changes in molecular weight distributions during the enzymatic hydrolysis of the different untreated and ionic liquid pretreated cellulose substrates. The molecular weight distributions showed a stronger shift to smaller molecular weights during enzymatic hydrolysis using a commercial cellulase preparation for cellulose with lower crystallinity. This was even more pronounced for ionic liquid-pretreated cellulose. Conclusions: In conclusion, this strongly simplified GPC method for cellulose molecular weight distribution allowed for the first time to demonstrate the influence of cellulose properties and pretreatment on the mode of enzymatic hydrolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据