4.6 Article

Force Generation by Parallel Combinations of Fiber-Reinforced Fluid-Driven Actuators

期刊

IEEE ROBOTICS AND AUTOMATION LETTERS
卷 3, 期 4, 页码 3999-4006

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LRA.2018.2859441

关键词

Soft material robotics; hydraulic/pneumatic actuators; force control

类别

资金

  1. Toyota Research Institute
  2. National Science Foundation Graduate Research Fellowship Program [1256260 DGE]

向作者/读者索取更多资源

The compliant structure of soft robotic systems enables a variety of novel capabilities in comparison to traditional rigid-bodied robots. Asubclass of soft fluid-driven actuators known as fiber-reinforced elastomeric enclosures (FREEs) is particularly well suited as actuators for these types of systems. FREEs are inherently soft and can impart spatial forces without imposing a rigid structure. Furthermore, they can be configured to produce a large variety of force andmoment combinations. In this letter, we explore the potential of combining multiple differently configured FREEs in parallel to achieve fully controllable multidimensional soft actuation. To this end, we propose a novel methodology to represent and calculate the generalized forces generated by soft actuators as a function of their internal pressure. This methodology relies on the notion of a state dependent fluid Jacobian that yields a linear expression for force. We employ this concept to construct the set of all possible forces that can be generated by a soft system in a given state. This force zonotope can be used to inform the design and control of parallel combinations of soft actuators. The approach is verified experimentally with the parallel combination of three carefully designed actuators constrained to a 2DOF test platform. The force predictions matched measured values with a root-mean-square error of less than 1.5 N force and 8 x 10(-3) Nm moment, demonstrating the utility of the presented methodology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据