4.6 Article

Enhancing E. coli Isobutanol Tolerance Through Engineering Its Global Transcription Factor cAMP Receptor Protein (CRP)

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 111, 期 4, 页码 700-708

出版社

WILEY
DOI: 10.1002/bit.25134

关键词

transcriptional engineering; global regulator; isobutanol tolerance; cAMP receptor protein; strain engineering; biofuel

资金

  1. Ministry of Education, Singapore [MOE2012-T2-2-117]

向作者/读者索取更多资源

The limited isobutanol tolerance of Escherichia coli is a major drawback during fermentative isobutanol production. Different from classical strain engineering approaches, this work was initiated to improve E. coli isobutanol tolerance from its transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP). Random mutagenesis libraries were generated by error-prone PCR of crp, and the libraries were subjected to isobutanol stress for selection. Variant IB2 (S179P, H199R) was isolated and exhibited much better growth (0.18h(-1)) than the control (0.05h(-1)) in 1.2% (v/v) isobutanol (9.6g/L). Genome-wide DNA microarray analysis revealed that 58 and 308 genes in IB2 had differential expression (>2-fold, p<0.05) in the absence and presence of 1% (v/v) isobutanol, respectively. When challenged with isobutanol, genes related to acid resistance (gadABCE, hdeABD), nitrate reduction (narUZYWV), flagella and fimbrial activity (lfhA, yehB, ycgR, fimCDF), and sulfate reduction and transportation (cysIJH, cysC, cysN) were the major functional groups that were up-regulated, whereas most of the down-regulated genes were enzyme (tnaA) and transporters (proVWX, manXYZ). As demonstrated by single-gene knockout experiments, gadX, nirB, rhaS, hdeB, and ybaS were found associated with strain isobutanol resistance. The intracellular reactive oxygen species (ROS) level in IB2 was only half of that of the control when facing stress, indicating that IB2 can withstand toxic isobutanol much better than the control. Biotechnol. Biotechnol. Bioeng. 2014;111: 700-708. (c) 2013 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据