4.6 Article

Role of non-specific DNA in reducing coding DNA requirement for transient gene expression with CHO and HEK-293E cells

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 109, 期 9, 页码 2271-2278

出版社

WILEY-BLACKWELL
DOI: 10.1002/bit.24494

关键词

transient gene expression; plasmid DNA; polyethyleneimine; mammalian cells; transfection

向作者/读者索取更多资源

Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the TGE volumetric productivity has improved significantly over the past decade, the amount of plasmid DNA (pDNA) needed for transfection remains very high. Here, we examined the use of non-specific (filler) DNA to partially replace the transgene-bearing plasmid DNA (coding pDNA) in transfections of Chinese hamster ovary (CHO) and human embryo kidney (HEK-293E) cells. When the optimal amount of coding pDNA for either host was reduced by 67% and replaced with filler DNA, the recombinant protein yield decreased by only 25% relative to the yield in control transfections. Filler DNA did not affect the cellular uptake or intracellular stability of coding pDNA, but its presence lead to increases of the percentage of transfected cells and the steady-state level of transgene mRNA compared to control transfections. Studies of the physicochemical properties of DNApolyethyleneimine (PEI) complexes with or without filler DNA did not reveal any differences in their size or surface charge. The results suggest that filler DNA allows the coding pDNA to be distributed over a greater number of DNAPEI complexes, leading to a higher percentage of transfected cells. The co-assembly of filler DNA and coding pDNA within complexes may also allow the latter to be more efficiently utilized by the cell's transcription machinery, resulting in a higher level of transgene mRNA. Biotechnol. Bioeng. 2012;109: 22712278. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据