4.6 Article

The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 109, 期 7, 页码 1745-1754

出版社

WILEY-BLACKWELL
DOI: 10.1002/bit.24429

关键词

biofilm; surface modification; radiation-induced graft polymerization; initial bacterial adhesion; electrostatic interaction; Escherichia coli

资金

  1. Japan Science and Technology
  2. Ogasawara Foundation for Promotion of Science and Technology

向作者/读者索取更多资源

Polyethylene (PE) sheets were modified by radiation-induced graft polymerization (RIGP) of an epoxy-group containing monomer glycidyl methacrylate (GMA). The epoxy group of GMA was opened by introducing sodium sulfite (SS) and diethylamine (DEA) as representatives of negatively and positively charged functional groups, respectively. These modified surfaces by RIGP, termed GMA, SS, and DEA sheets, were investigated to elucidate their effects on initial adhesion and subsequent biofilm formation of Escherichia coli. Initial adhesion test revealed that E. coli density and viability were governed by sheet surface electrostatic property: E. coli cell density on the DEA sheet was 23 times higher than that on the SS sheet after 8?h incubation. The viability of E. coli cells dramatically decreased after contact with the DEA sheet, but remained high on the SS sheet. E. coli biofilm structure on the DEA sheet was dense, homogeneous, and uniform, with biomass higher than that of the GMA and SS sheets by factors of 14.0 and 37.5, respectively. On the contrary, biofilm structure on the SS sheet was sparse, heterogeneous, and mushroom-shaped. More than 40% of E. coli biofilm on the DEA sheet was retained under a high liquid shear force condition (5,000?s-1), whereas 97% and 100% of biofilms on the GMA and SS sheets were sloughed, indicating that E. coli biofilm robustness depends on surface charge property of the substratum. This suggests that substratum surface fabrication by RIGP may enhance or suppress biofilm formation, a finding with potentially important practical implications. Biotechnol. Bioeng. 2012; 109:17451754. (C) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据