4.6 Article

Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 109, 期 11, 页码 2884-2895

出版社

WILEY
DOI: 10.1002/bit.24552

关键词

hybrid promoter; promoter engineering; Saccharomyces cerevisiae; GPD; TDH3; GAL

资金

  1. DuPont Young Professor Grant
  2. Office of Naval Research Young Investigator Program Award

向作者/读者索取更多资源

A dynamic range of well-controlled constitutive and tunable promoters are essential for metabolic engineering and synthetic biology applications in all host organisms. Here, we apply a synthetic hybrid promoter approach for the creation of strong promoter libraries in the model yeast, Saccharomyces cerevisiae. Synthetic hybrid promoters are composed of two modular componentsthe enhancer element, consisting of tandem repeats or combinations of upstream activation sequences (UAS), and the core promoter element. We demonstrate the utility of this approach with three main case studies. First, we establish a dynamic range of constitutive promoters and in doing so expand transcriptional capacity of the strongest constitutive yeast promoter, PGPD, by 2.5-fold in terms of mRNA levels. Second, we demonstrate the capacity to impart synthetic regulation through a hybrid promoter approach by adding galactose activation and removing glucose repression. Third, we establish a collection of galactose-inducible hybrid promoters that span a nearly 50-fold dynamic range of galactose-induced expression levels and increase the transcriptional capacity of the Gal1 promoter by 15%. These results demonstrate that promoters in S. cerevisiae, and potentially all yeast, are enhancer limited and a synthetic hybrid promoter approach can expand, enhance, and control promoter activity. Biotechnol. Bioeng. 2012; 109: 28842895. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据