4.6 Article

Study and design of stability in GH5 cellulases

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 109, 期 1, 页码 31-44

出版社

WILEY-BLACKWELL
DOI: 10.1002/bit.23280

关键词

endoglucanases; molecular dynamics; thermal stability; enzyme engineering; mutagenesis; cellulase

资金

  1. USDA-CSREES through the Biodesign and Bioprocessing Center at Virginia Tech

向作者/读者索取更多资源

Thermostable enzymes that hydrolyze lignocellulosic materials provide potential advantages in process configuration and enhancement of production efficiency over their mesophilic counterparts in the bioethanol industry. In this study, the dynamics of beta-1,4-endoglucanases (EC: 3.2.1.4) from family 5 of glycoside hydrolases (GH5) were investigated computationally. The conformational flexibility of 12 GH5 cellulases, ranging from psychrophilic to hyperthermophilic, was investigated by molecular dynamics (MD) simulations at elevated temperatures. The results indicated that the protein flexibility and optimum activity temperatures are appreciably correlated. Intra-protein interactions, packing density and solvent accessible area were further examined in crystal structures to investigate factors that are possibly involved in higher rigidity of thermostable cellulases. The MD simulations and the rules learned from analyses of stabilizing factors were used in design of mutations toward the thermostabilization of cellulase C, one of the GH5 endoglucanases. This enzyme was successfully stabilized both chemically and thermally by introduction of a new disulfide cross-link to its highly mobile 56-amino acid subdomain. Biotechnol. Bioeng. 2012;109: 3144. (c) 2011 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据