4.6 Article

Coping With Complexity: Machine Learning Optimization of Cell-Free Protein Synthesis

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 108, 期 9, 页码 2218-2228

出版社

WILEY
DOI: 10.1002/bit.23178

关键词

design of experiments; protein expression; complexity; optimization

向作者/读者索取更多资源

Biological systems contain complex metabolic pathways with many nonlinearities and synergies that make them difficult to predict from first principles. Protein synthesis is a canonical example of such a pathway. Here we show how cell-free protein synthesis may be improved through a series of iterated high-throughput experiments guided by a machine-learning algorithm implementing a form of evolutionary design of experiments (Evo-DoE). The algorithm predicts fruitful experiments from statistical models of the previous experimental results, combined with stochastic exploration of the experimental space. The desired experimental response, or evolutionary fitness, was defined as the yield of the target product, and new experimental conditions were discovered to have similar to 350% greater yield than the standard. An analysis of the best experimental conditions discovered indicates that there are two distinct classes of kinetics, thus showing how our evolutionary design of experiments is capable of significant innovation, as well as gradual improvement. Biotechnol. Bioeng. 2011; 108: 2218-2228. (C) 2011 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据