4.6 Article

Binding Modules Alter the Activity of Chimeric Cellulases: Effects of Biomass Pretreatment and Enzyme Source

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 107, 期 4, 页码 601-611

出版社

WILEY
DOI: 10.1002/bit.22856

关键词

carbohydrate binding module; cell free protein synthesis; biofuels; cellulase; pretreatment

资金

  1. Energy Biosciences Institute

向作者/读者索取更多资源

Improving the catalytic activity of cellulases requires screening variants against solid substrates. Expressing cellulases in microbial hosts is time-consuming, can be cellulase specific, and often leads to inactive forms and/or low yields. These limitations have been obstacles for improving cellulases in a high-throughput mariner. We have developed a cell free expression system and used it to express 54 chimeric bacterial and archaeal endoglucanases (EGs), with and without cellulose binding modules (CBMs) at either the N- or C-terminus, in active enzyme yields of 100-350 mu g/mL. The platform was employed to systematically study the role of CBMs in cellulose hydrolysis toward a variety of natural and pretreated solid substrates, including ionic-liquid pretreated Miscanthus and AFEX-pretreated corn stover. Adding a CBM generally increased activity against crystalline Avicel, whereas for pretreated substrates the effect of CBM addition depended on the source of cellulase. The cell-free expression platform can thus provide insights into cellulase structure-function relationships for any substrate, and constitutes a powerful discovery tool for evaluating or engineering cellulolytic enzymes for biofuels production. Biotechnol. Bioeng. 2010;107: 601-611. (C) 2010 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据