4.5 Article

Distinct cortical responses evoked by electrical stimulation of the thalamic ventral intermediate nucleus and of the subthalamic nucleus

期刊

NEUROIMAGE-CLINICAL
卷 20, 期 -, 页码 1246-1254

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.nicl.2018.11.001

关键词

Deep brain stimulation; Cortical responses; Magnetoencephalography

资金

  1. Klinische Forschungskommission of the Heinrich-Heine-Universitat Dusseldorf [55/2011]

向作者/读者索取更多资源

Objective: To investigate the spatial and temporal pattern of cortical responses evoked by deep brain stimulation (DBS) of the subthalamic nucleus (STN) and ventral intermediate nucleus of the thalamus (VIM). Methods: We investigated 7 patients suffering from Essential tremor (ET) and 7 patients with Parkinson's Disease (PD) following the implantation of DBS electrodes (VIM for ET patients, STN for PD patients). Magnetoencephalography (MEG) was used to record cortical responses evoked by electric stimuli that were applied via the DBS electrode in trains of 5 Hz. Dipole fitting was applied to reconstruct the origin of evoked responses. Results: Both VIM and STN DBS led to short latency cortical responses at about 1 ms. The pattern of medium and long latency cortical responses following VIM DBS consisted of peaks at 13, 40, 77, and 116 ms. The associated equivalent dipoles were localized within the central sulcus, 3 patients showed an additional response in the cerebellum at 56 ms. STN DBS evoked cortical responses peaking at 4 ms, 11 ms, and 27 ms, respectively. While most dipoles were localized in the pre- or postcentral gyrus, the distribution was less homogenous compared to VIM stimulation and partially included prefrontal brain areas. Conclusion: MEG enables localization of cortical responses evoked by DBS of the VIM and the STN, especially in the sensorimotor cortex. Short latency responses of 1 ms suggest cortical modulation which bypasses synaptic transmission, i.e. antidromic activation of corticofugal fiber pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据