4.6 Article

Hydrophobic Interaction Chromatography in Dual Salt System Increases Protein Binding Capacity

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 103, 期 5, 页码 930-935

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/bit.22313

关键词

hydrophobic interaction chromatography; dual salt; salting-out effects; salting-in effects; dynamic binding capacity; protein solubility

资金

  1. Analytical Science Department at Amgen

向作者/读者索取更多资源

Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity. Biotechnol. Bioeng. 2009;103: 930-935. (C) 2009 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据