4.6 Article

Fungal Pretreatment of Lignocellulose by Phanerochaete chrysosporium to Produce Ethanol From Rice Straw

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 104, 期 3, 页码 471-482

出版社

WILEY
DOI: 10.1002/bit.22423

关键词

lignocellulose; fungal pretreatment; Phanerochaete chrysosporium; ethanol; manganese peroxidase; glyoxal oxidase

资金

  1. BioGreen21 Program [20050401-034-683-143]

向作者/读者索取更多资源

Phanerochaete chrysosporium is a wood-rot fungus that is capable of degrading lignin via its lignolytic system. In this study, an environmentally friendly fungal pretreatment process that produces less inhibitory substances than conventional methods was developed using A chrysosporium and then evaluated by various analytical methods. To maximize the production of manganese peroxidase, which is the primary lignin-degrading enzyme, culture medium was optimized using response surface methodologies including the Plackett-Burman design and the Box-Behnken design. Fermentation of 100 g of rice straw feedstock containing 35.7 g of glucan (mainly in the form of cellulose) by cultivation with A chrysosporium for 15 days in the media optimized by response surface methodology was resulted in a yield of 29.0 g of glucan that had an enzymatic digestibility of 64.9% of the theoretical maximum glucose yield. In addition, scanning electronic microscopy, confocal laser scanning microscopy, and X-ray diffractometry revealed significant microstructural changes, fungal growth, and a reduction of the crystallinity index in the pretreated rice straw, respectively. When the fungal-pretreated rice straw was used as a substrate for ethanol production in simultaneous saccharification and fermentation (SSF) for 24 h, the ethanol concentration, production yield and the productivity were 9.49 g/L, 58.2% of the theoretical maximum, and 0.40 g/L/h, respectively. Based on these experimental data, if 100 g of rice straw are subjected to fungal pretreatment and SSF, 9.9 g of ethanol can be produced after 96 h, which is 62.7% of the theoretical maximum ethanol yield. Biotechnol. Bioeng. 2009;104: 471-482. (C) 2009 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据