4.6 Article

Characterization of Cyanobacterial β-Carotene Ketolase and Hydroxylase Genes in Escherichia coli, and Their Application for Astaxanthin Biosynthesis

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 103, 期 5, 页码 944-955

出版社

WILEY
DOI: 10.1002/bit.22330

关键词

E. coli; astaxanthin; cyanobacteria; metabolic engineering; beta-carotene ketolase; beta-carotene hydroxylase

资金

  1. UK's Engineering and Physical Sciences Council (EPSRC) [EP/E036252/1, GR/S84347/01]
  2. The University of Sheffield
  3. Ocean Nutrition Canada
  4. EPSRC [EP/E036252/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [GR/S84347/01, EP/E036252/1] Funding Source: researchfish

向作者/读者索取更多资源

Carotenoid biosynthesis is highly conserved and well characterized up to the synthesis of beta-carotene. Conversely, the synthesis of astaxanthin from beta-carotene is less well characterized. Regardless, astaxanthin is a highly sought natural product, due to its various industrial applications and elevated antioxidant capacity. In this article, 12 beta-carotene ketolase and 4 beta-carotene hydroxylase genes, isolated from 5 cyanobacterial species, are investigated for their function, and potential for microbial astaxanthin synthesis. Further, this in vivo comparison identifies and applies the most promising genetic elements within a dual expression vector, which is maintained in Escherichia coli. Here, combined overexpression of individual beta-carotene ketolase and beta-carotene hydroxylase genes, within a beta-carotene accumulating host, enables a 23.5-fold improvement in total carotenoid yield (1.99 mg g(-1)), over the parental strain, with >90% astaxanthin. Biotechnol. Bioeng. 2009;103: 944-955. (C) 2009 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据