4.6 Article

Interplay Between Light Intensity, Chlorophyll Concentration and Culture Mixing on the Hydrogen Production in Sulfur-Deprived Chlamydomonas reinhardtii Cultures Grown in Laboratory Photobioreactors

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 104, 期 1, 页码 76-90

出版社

WILEY-BLACKWELL
DOI: 10.1002/bit.22384

关键词

H-2 photoproduction; C. reinhardtii; mixing systems; light/dark cycles

资金

  1. MIUR (Italian Ministry of University and Research) through the Italian financed project FISR Fondo Integrativo Speciale per la Ricerca
  2. Regione Toscana (Italy), POR Ob. 3 Toscana M D4 Produzione sostenibile di idrogeno mediante processi elettrochimici e fotobiologici

向作者/读者索取更多资源

Relationships between light intensity and chlorophyll concentration on hydrogen production were investigated in a sulfur-deprived Chlamydomonas reinhardtii culture in a laboratory scale photobioreactor (PBR) equipped with two different stirring devices. in the first case, the Culture was mixed using a conventional magnetic stir bar, while in the second it was mixed using an impeller equipped with five turbines. Experiments were carried out at 70 and 140 mu mol photons m(-2) s(-1) in combination(-1) with chlorophyll concentrations of 12 and 24 mg(-2) L-1. A high light intensity (140 mu mol photons in m(-2) s(-1), supplied on both sides of the PBR) in combination with a low chlorophyll concentration (12 mg L-1) inhibited the production of hydrogen, in particular in the culture mixed with the stir bar. An optimal combination for hydrogen production was found when the cultures were exposed to 140 mu mol photons m(-2) s(-1) (on both sides) and 24 mg L-1 of chlorophyll. Under these conditions, the hydrogen production output rate reached about 120 mL L-1 in the culture mixed with the stir bar, and rose to about 170 mL L-1 in the one mixed with the impeller. These outputs corresponded to a mean light conversion efficiency of 0.56% and 0.81%, respectively. However, the efficiency increased to 1.08% and 1.64%, respectively, when maximum hydrogen rates were considered. The better performance of the dense cultures mixed with an impeller was mainly attributed to an intermittent illumination pattern to which the cells were subjected (time cycles within 50-100 ms) which influenced the hydrogen production (1) directly, by providing the PSII with a higher production of electrons for the hydrogenase and (2) indirectly, through a higher synthesis of carbohydrates. The fluid dynamics in the PBR equipped with the impeller was characterized. The better mixing state achieved in the PBR of the new configuration makes it a useful tool for studying the hydrogen production process involving photosynthetic microorganisms, and provides a better insight into the physiology of the process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据