4.6 Article

Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 99, 期 2, 页码 455-467

出版社

WILEY
DOI: 10.1002/bit.21572

关键词

radial flow bioreactor; stacked microgrooved substrates; microfabrication; perfusion; hepatocyte; bioartificial liver

向作者/读者索取更多资源

Bioartificial liver (BAL) devices with fully functioning hepatocytes have the potential to provide temporary hepatic support for patients with liver failure. The goal of this study was to optimize the flow environment for the cultured hepatocytes in a stacked substrate, radial flow bioreactor. Photolithographic techniques were used to microfabricate concentric grooves onto the underlying glass substrates. The microgrooves served to protect the seeded hepatocytes from the high shear stresses caused by the volumetric flow rates necessary for adequate convective oxygen delivery. Finite element analysis was used to analyze the shear stresses and oxygen concentrations in the bioreactor. By employing high volumetric flow rates, sufficient oxygen supply to the hepatocytes was possible without an integrated oxygen permeable membrane. To implement this concept, 18 microgrooved glass substrates, seeded with rat hepatocytes cocultured with 3T3-J2 fibroblasts, were stacked in the bioreactor, creating a channel height of 100 mu m between each substrate. In this bioreactor configuration, liver-specific functions (i.e., albumin and urea synthesis rates) of the hepatocytes remained stable over 5 days of perfusion, and were significantly increased compared to those in the radial flow bioreactor with stacked substrates without microgrooves. This study suggests that this radial flow bioreactor with stacked microgrooved substrates is scalable and may have potential as a BAL device in the treatment of liver failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据