4.6 Article

Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 100, 期 6, 页码 1122-1131

出版社

WILEY
DOI: 10.1002/bit.21849

关键词

Saccharomyces cerevisiae F12; SSF; wheat straw; steam explosion; bioethanol

向作者/读者索取更多资源

In this study, bioethanol production from steam-exploded wheat straw using different process configurations was evaluated using two Saccharomyces cerevisiae strains, F12 and Red Star. The strain F12 has been engineerically modified to allow xylose consumption as cereal straw contain considerable amounts of pentoses. Red Star is a robust hexose-fermenting strain used for industrial fuel ethanol fermentations and it was used for comparative purposes. The highest ethanol concentration, 23.7 g/L, was reached using the whole slurry (10%, w/v) and the recombinant strain (F12) in an SSF process, it showed an ethanol yield on consumed sugars of 0.43 g/g and a volumetric ethanol productivity of 0.7 g/Lh for the first 3 h. Ethanol concentrations obtained in SSF processes were in all cases higher than those from SHF at the same conditions. Furthermore, using the whole slurry, final ethanol concentration was improved in all tests due to the increase of potential fermentable sugars in the fermentation broth. Inhibitory compounds present in the pretreated wheat straw caused a significantly negative effect on the fermentation rate. However, it was found that the inhibitors furfural and HMF were completely metabolized by the yeast during SSF by metabolic redox reactions. An often encountered problem during xylose fermentation is considerable xylitol production that occurs due to metabolic redox imbalance. However, in our work this redox imbalance was counteracted by the detoxification reactions and no xylitol was produced.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据