4.6 Article

Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 99, 期 6, 页码 1320-1328

出版社

WILEY-BLACKWELL
DOI: 10.1002/bit.21712

关键词

lignocellulosic materials; cellulose; biofuel; alkaline; pretreatment

向作者/读者索取更多资源

Alkaline pretreatment of spruce at low temperature in both presence and absence of urea was studied. It was found that the enzymatic hydrolysis rate and efficiency can be significantly improved by the pretreatment. At low temperature, the pretreatment chemicals, either NaOH alone or NaOH-urea mixture solution, can slightly remove lignin, hemicelluloses, and cellulose in the lignocellulosic materials, disrupt the connections between hemicelluloses, cellulose, and lignin, and alter the structure of treated biomass to make cellulose more accessible to hydrolysis enzymes. Moreover, the wood fiber bundles could be broken down to small and loose lignocellulosic particles by the chemical treatment. Therefore, the enzymatic hydrolysis efficiency of untreated mechanical fibers can also be remarkably enhanced by NaOH or NaOH/urea solution treatment. The results indicated that, for spruce, up to 70% glucose yield could be obtained for the cold temperature pretreatment (-15 degrees C using 7% NaOH/ 12% urea solution, but only 20% and 24% glucose yields were obtained at temperatures of 23 degrees C and 60 degrees C, respectively, when other conditions remained the same. The best condition for the chemical pretreatment regarding this study was 3% NaOH/12% urea, and -15 degrees C. Over 60% glucose conversion was achieved upon this condition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据