4.0 Article

Impact of acute versus prolonged exercise and dehydration on kidney function and injury

期刊

PHYSIOLOGICAL REPORTS
卷 6, 期 11, 页码 -

出版社

WILEY
DOI: 10.14814/phy2.13734

关键词

Kidney function; kidney injury molecule-1; neutrophil gelatinase-associated lipocalin; renal damage; renal function

资金

  1. European Commission [655502]
  2. STW [12864]
  3. Innovation Initiative of the Dutch Health Insurance Companies (Innovatiefonds Zorgverzekeraars)
  4. Society of Experimental Laboratory Medicine

向作者/读者索取更多资源

Exercise and dehydration may be associated with a compromised kidney function and potential signs of kidney injury. However, the kidney responses to exercise of different durations and hypohydration levels are not yet known. Therefore, we aimed to compare the effects of acute versus prolonged exercise and dehydration on estimated glomerular filtration rate (eGFR) and kidney injury biomarkers in healthy male adults. A total of 35 subjects (23 +/- 3years) were included and invited for two study visits. Visit 1 consisted of a maximal cycling test. On Visit 2, subjects performed a submaximal exercise test at 80% of maximal heart rate until 3% hypohydration. Blood and urine samples were taken at baseline, after 30min of exercise (acute effects; low level of hypohydration) and after 150min of exercise or when 3% hypohydration was achieved (prolonged effects, high level of hypohydration). Urinary outcome parameters were corrected for urinary cystatin C, creatinine, and osmolality. Subjects dehydrated on average 0.6 +/- 0.3% and 2.9 +/- 0.7% after acute and prolonged exercise, respectively (P<0.001). The eGFR(cystatin C) did not differ between baseline and acute exercise (118 +/- 11 vs. 116 +/- 12mL/min/1.73m(2), P=0.12), whereas eGFR(cystatin C) was significantly lower after prolonged exercise (103 +/- 16mL/min/1.73m(2), P<0.001). We found no difference in osmolality corrected uKIM1 concentrations after acute and prolonged exercise (P>0.05), and elevated osmolality corrected uNGAL concentrations after acute and prolonged exercise (all P-values<0.05). In conclusion, acute exercise did barely impact on eGFR(cystatin C) and kidney injury biomarkers, whereas prolonged exercise is associated with a decline in eGFR(cystatin C) and increased biomarkers for kidney injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据