4.6 Review

Editing the Genome Without Double-Stranded DNA Breaks

期刊

ACS CHEMICAL BIOLOGY
卷 13, 期 2, 页码 383-388

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acschembio.7b00710

关键词

-

资金

  1. DARPA [HR0011-17-2-0049]
  2. U.S. National Institutes of Health (NIH) [R01 EB022376, R35 GM118062, RM1 HG009490]
  3. Howard Hughes Medical Institute
  4. NATIONAL HUMAN GENOME RESEARCH INSTITUTE [RM1HG009490] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R01EB022376] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R35GM118062] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Genome editing methods have commonly relied on the initial introduction of double-stranded DNA breaks (DSBs), resulting in stochastic insertions, deletions, and translocations at the target genomic locus. To achieve gene correction, these methods typically require the introduction of exogenous DNA repair templates and low-efficiency homologous recombination processes. In this review, we describe alternative, mechanistically motivated strategies to perform chemistry on the genome of unmodified cells without introducing DSBs. One such strategy, base editing, uses chemical and biological insights to directly and permanently convert one target base pair to another. Despite its recent introduction, base editing has already enabled a number of new capabilities and applications in the genome editing community. We summarize these advances here and discuss the new possibilities that this method has unveiled, concluding with a brief analysis of future prospects for genome and transcriptome editing without double-stranded DNA cleavage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据