4.7 Review

Potential applications of enzymes immobilized on/in nano materials: A review

期刊

BIOTECHNOLOGY ADVANCES
卷 30, 期 3, 页码 512-523

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biotechadv.2011.09.005

关键词

Nanoparticles; Immobilization; Biosensors; Biomedical applications

资金

  1. Council of Science and Technology, Lucknow, Uttar Pradesh

向作者/读者索取更多资源

Several new types of carriers and technologies have been implemented in the recent past to improve traditional enzyme immobilization which aimed to enhance enzyme loading, activity and stability to decrease the enzyme biocatalyst cost in industrial biotechnology. These include cross-linked enzyme aggregates, microwave-assisted immobilization, click chemistry technology, mesoporous supports and most recently nanoparticle-based immobilization of enzymes. The union of the specific physical, chemical, optical and electrical properties of nanoparticles with the specific recognition or catalytic properties of biomolecules has led to their appearance in myriad novel biotechnological applications. They have been applied time and again for immobilization of industrially important enzymes with improved characteristics. The high surface-to-volume ratio offered by nanoparticles resulted in the concentration of the immobilized entity being considerably higher than that afforded by experimental protocols based on immobilization on planar 2-D surfaces. Enzymes immobilized on nanoparticles showed a broader working pH and temperature range and higher thermal stability than the native enzymes. Compared with the conventional immobilization methods, nanoparticle based immobilization served three important features; (i) nano-enzyme particles are easy to synthesize in high solid content without using surfactants and toxic reagents, (ii) homogeneous and well defined core-shell nanoparticles with a thick enzyme shell can be obtained, and (iii) particle size can be conveniently tailored within utility limits. In addition, with the growing attention paid to cascade enzymatic reaction and in vitro synthetic biology, it is possible that co-immobilization of multi-enzymes could be achieved on these nanoparticles. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据