4.7 Article

Mutations affecting glycinergic neurotransmission in hyperekplexia increase pain sensitivity

期刊

BRAIN
卷 141, 期 -, 页码 63-71

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awx289

关键词

hyperekplexia; GABA; glycine; startle disease; pain modulation

资金

  1. Swiss National Science Foundation [SPUM 33CM30-124117]
  2. Scientific Funds of the University Department of Anaesthesiology and Pain Therapy of the University of Bern, Switzerland

向作者/读者索取更多资源

Inhibitory interneurons in the spinal cord use glycine and GABA for fast inhibitory neurotransmission. While there is abundant research on these inhibitory pain pathways in animal models, their relevance in humans remains unclear, largely due to the limited possibility to manipulate selectively these pathways in humans. Hyperekplexia is a rare human disease that is caused by loss-offunction mutations in genes encoding for glycine receptors and glycine transporters. In the present study, we tested whether hyperekplexia patients display altered pain perception or central pain modulation compared with healthy subjects. Seven patients with genetically and clinically confirmed hyperekplexia were compared to 14 healthy age-and sex-matched controls. The following quantitative sensory tests were performed: pressure pain detection threshold (primary outcome), ice water tolerance, single and repeated electrical pain detection thresholds, nociceptive withdrawal reflex threshold, and conditioned pain modulation. Statistical analysis was performed using linear mixed models. Hyperekplexia patients displayed lower pain thresholds than healthy controls for all of the quantitative sensory tests [mean (standard deviation)]: pressure pain detection threshold [273 (170) versus 475 (115) kPa, P = 0.003], ice water tolerance [49.2 (36.5) versus 85.7 (35.0) s, P = 0.015], electrical single pain detection threshold [5.42 (2.64) versus 7.47 (2.62) mA, P = 0.012], electrical repeated pain detection threshold [3.76 (1.41) versus 5.8 (1.73) mA, P = 0.003], and nociceptive withdrawal reflex [7.42 (3.63) versus 14.1 (6.9) mA, P = 0.015]. Conditioned pain modulation was significantly reduced in hyperekplexia [increase to baseline: 53.2 (63.7) versus 105 (57) kPa, P = 0.030]. Our data demonstrate increased pain sensitivity and impaired central pain modulation in hyperekplexia patients, supporting the importance of glycinergic neurotransmission for central pain modulation in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据