4.8 Review

Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 51, 期 1, 页码 89-96

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.7b00520

关键词

-

资金

  1. Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]
  2. Virginia Tech Department of Chemistry startup funds
  3. ORAU Ralph E. Powe Junior Faculty Enhancement Award
  4. Virginia Tech College of Science

向作者/读者索取更多资源

Layered lithium transition metal oxides, in particular, NMCs (LiNixCoyMnzO2) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti'for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface structural and chemical changes affect the charge distribution, the charge compensation mechanisms, and ultimately, the battery performance. Surface reconstruction, cathode/electrolyte interface layer formation, and oxygen loss are intimately related, making it difficult to disentangle the effects of each of these phenomena. They are driven by the different redox activities of Ni and 0 on the surface and in the bulk; there is a greater tendency for charge compensation to occur on oxygen anions at particle surfaces rather than on Ni, whereas the Ni in the bulk is more redox active than on the surface. Finally, our-latest research efforts are directed toward-understanding the, thermal properties of NIVIC, which is highly relevant to their safety in operating cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据