4.8 Review

Invited review article: Strategies and processes for high quality wire arc additive manufacturing

期刊

ADDITIVE MANUFACTURING
卷 22, 期 -, 页码 672-686

出版社

ELSEVIER
DOI: 10.1016/j.addma.2018.06.020

关键词

Additive manufacturing; Wire arc additive manufacturing; Processes

资金

  1. Engineering and Physical Sciences Research Council Case Studentship [1780168]
  2. Renishaw plc
  3. EPSRC [1780168] Funding Source: UKRI

向作者/读者索取更多资源

Wire Arc Additive Manufacturing (WAAM) is attracting significant attention in industry and academia due to its ability to capture the benefits of additive manufacturing for production of large components of medium geometric complexity. Uniquely, WAAM combines the use of wire and electric arc as a fusion source to build components in a layer-by-layer approach, both of which can offer significant cost savings compared to powder and alternative fusion sources, such as laser and electron beam, respectively. Meanwhile, a high deposition rate, key for producing such components, is provided, whilst also allowing significant material savings compared to conventional manufacturing processes. However, high quality production in a wide range of materials is limited by the elevated levels of heat input which causes a number of materials processing challenges in WAAM. The materials processing challenges are fully identified in this paper to include the development of high residual stresses, undesirable microstructures, and solute segregation and phase transformations at solidification. The thermal profile during the build poses another challenge leading to heterogeneous and anisotropic material properties. This paper outlines how the materials processing challenges may be addressed in WAAM by implementation of quality improving ancillary processes. The primary WAAM process selections and ancillary processes are classified by the authors and a comprehensive review of their application conducted. Strategies by which the ancillary processes can enhance the quality of WAAM parts are presented. The efficacy and suitability of these strategies for versatile and cost effective WAAM production are discussed and a future vision of WAAM process developments provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据