4.8 Article

Photogrammetric measurements of 3D printed microfluidic devices

期刊

ADDITIVE MANUFACTURING
卷 21, 期 -, 页码 53-62

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.addma.2018.02.013

关键词

Microfluidics; 3D printing; Photogrammetry; Measurement

向作者/读者索取更多资源

Additive manufacturing (AM) processes are being more frequently applied in several fields ranging from the industrial to the biomedical, in large part owing to their advantages which make them suitable for several applications such as scaffolds for tissue engineering, dental procedures, and 3D models to improve surgical planning. Moreover, these processes are particularly suited for the fabrication of microfluidic devices and labson-a-chip (LOC) designed to work with biological samples and chemical reaction mixtures. An aspect not sufficiently investigated is related to the dimensional verification of these devices. The main criticality is the texture-less surface that characterizes the AM products and strongly affects the effectiveness of most currently available 3D optical measuring instruments. In this study, a passive photogrammetric scanning system has been used as a non-destructive and low-cost technique for the reconstruction and measurement of 3D printed microfluidic devices. Four devices, manufactured with stereolithography (SLA), fused deposition modelling (FDM) a Stratasys trademark, also known as fused filament fabrication (FFF), and Polyjet have been reconstructed and measured, and the results have been compared to those obtained with optical profilometry that is considered as the gold standard.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据