4.8 Article

A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation

期刊

PLANT CELL
卷 30, 期 10, 页码 2330-2351

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.17.00983

关键词

-

资金

  1. Newton International and OMICS@vibMarie Curie COFUND fellowship
  2. National Science Foundation [IOS 1146620, DBI-052163]
  3. CSC fellowship
  4. ANR project Pectosign
  5. LabEx Saclay Plant Sciences-SPS [ANR-10-LABX-0040-SPS]
  6. Research Foundation Flanders [G.002911N]
  7. Interuniversity Attraction Poles Programme [IUAP P7/29]
  8. Belgian Science Policy Office

向作者/读者索取更多资源

Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and experimentally verified a high-resolution DNA endoploidy map of the developing Arabidopsis thaliana root, revealing a remarkable spatiotemporal control of DNA endoploidy levels across tissues. Fitting of a simplified model to publicly available data sets profiling root gene expression under various environmental stress conditions suggested that this root endoploidy patterning may be stress-responsive. Furthermore, cellular and transcriptomic analyses revealed that inhibition of endoreplication onset alters the nuclear-to-cellular volume ratio and the expression of cell wall-modifying genes, in correlation with the appearance of cell structural changes. Our data indicate that endopolyploidy might serve to coordinate cell expansion with structural stability and that spatiotemporal endoreplication pattern changes may buffer for stress conditions, which may explain the widespread occurrence of the endocycle in plant species growing in extreme or variable environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据